

The importance of traceability in dimensional metrology in microfluidic systems

Elsa Batista^{a,b,*}, João Alves e Sousa^a, Fernanda Saraiva^a, Susana Cardoso^{b,c}, Luis Martins^d, Andre Lopes^{a,e}, Rui Martins^e, Vania Silverio^{b,c}

^a Portuguese Institute for Quality, IPQ; ^b Instituto de Engenharia de Sistemas e Computadores para os Microsistemas e as Nanotecnologias, INESC MN;

^c Department of Physics, Instituto Superior Técnico, Universidade de Lisboa; ^d Laboratório Nacional de Engenharia Civil – LNEC; ^e Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, UNIDEMI

* ebatista@ipq.pt

EURAMET – 20NRM02 MFMET

This project aims to contribute to the development of globally accepted standards for microfluidics and disseminate them to end users in industry (health and pharmaceutical sectors) and academia.

DEVELOPMENT OF CONSENSUS-BASED MEASUREMENT PROTOCOLS & GUIDELINES • BY THE DISSEMINATION OF METROLOGY STANDARDS TOWARDS NORMATIVE COMMITTEES (ISO TC48/WG3), INDUSTRY AND END USERS

Less

Objective of the work: assessment of the suitability of components of 3 different microfluidic chips in order to assure dimensional traceability to primary standards.

TESTED CHIPS

Three different chips made of Polydimethylsiloxane (PDMS) and of Cyclic Olefin Copolymer (TOPAS) were used. The dimensional characteristic of the connection were determined by a profile projector and a interferometer. The flow rate was determined using the gravimetric method and the front track method.

Metrological compatibility is a property of a set of measurement results for a specified measurand, such that the absolute value of the difference of any pair of measured quantity values from two different measurement results is smaller than some chosen multiple of the standard measurement uncertainty of that difference.

Traceability is a guarantee for quality of calibration results

Measurement Traceability is a property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty. (VIM)

FLOW CALIBRATION METHODS

Gravimetric method

The gravimetric method relies on weighing the mass of the working fluid delivered by the instrument under test for a set time

$Q_{20} = \frac{1}{t_f - t_i} \left[\left(\left(I_f - I_i \right) - \left(\delta m_{buoy} \right) \right) \times \frac{1}{\rho_W - \rho_A} \times \left(1 - \frac{\rho_A}{\rho_B} \right) \times \left[1 - \gamma (T_W - 20) \right] \right] + \delta_{evap}$

Front track method

The experimental setup consists of using a highresolution camera and an image processing software (Python) to track the distance traveled by the meniscus of a liquid in a capillary tube and calculate the flow rate.

microfluidic channel

syringe pump

	Plastic tip	diameter	1.200		0.040	chip hole		inner diameter		т.	504	0.038	
	Tube tip	Inner diameter	0.9	12 (0.010	Connect	tor	External diameter of top		1	77	0.44	
	Rubber tube	Inner diameter	nner 0.80 ameter		0.005	Rubber t	ube Inner		diameter		820	0.039	
Interfe	erometry	CHIP C						Profilometry					
Ι		Measurand		Value [mm) Devia	Standard Deviation [mm]			Measurand		Measurand estimation	<i>U</i> [mm]	
	Connector	Small inner diameter		0.93		0.11			External larg		[mm]		I
\bigcirc		External la diamete	arge er	2.577	(0.012	Coni	nector	diameter		2.78	0.18	U
	Chip hole	hole Inner diameter		2.883	(0.007			Inner diameter		2.042	0.010	
	Measurand		Value [mm	n] <i>U</i>	[mm]	Chip	o hole	2.843			0.019		
V	Plastic tip	Inner diam	eter	1.26	(0.040							
O	Tube tip	Inner diam	eter	0.912	(0.010							

FLOW MEASUREMENT RESULTS

		Front tra	ck metho	d	Gravimetı			
Chip	Nominal flow [mL/h]	Measured flow [mL/h]	Error [%]	U [%]	Measured flow [mL/h]	Error [%]	U [%]	En
	0.001	-0.0014	-171	14.0	0.00092	-8	23	-6.04
PDIVIS	1	1.0411	-3.9	5.3	0.9945	0.55	2.4	0.77
	0.01	0.0095	5.3	3.7	0.0099	1.0	5.0	-0.69
Α	0.1	0.0967	3.4	2.8	0.0983	1.7	3.8	-0.36
	1	0.9819	1.8	6.2	0.9907	0.93	0.19	-0.15
	0.01	-0.0033	-403	43	0.0069	31	5	9.94
С	0.1	0.0996	0.5	1.9	0.097	2.6	3.4	0.55
	1	1.0259	-2.5	4.0	1.017	-1.7	3.0	0.17

SUMMARY

Length measurements: the measured values (estimation of the length measurands) and the uncertainties obtained with the two methods used, interferometry and profile projection, are compatible. When using interferometry, the definition of the measurement plane of the accessories of translucent material presented technical difficulties mostly due to the available equipment. As such, for these measurements, only the standard deviation of the measurements was indicated.
Shape deviations intrinsic to the accessories (roundness, cylindricity) of plastic material are identified as the main factors for the high standard deviations found (of the order of 0.01 mm, when the interferometer has a resolution of 0.01 µm). The shape deviations and the plasticity of the constituent material of the tubes and connectors prevented measurements with superior accuracy, even when using the interferometer as measuring equipment to guarantee the metrological traceability of these accessories. With the profile projector it was possible to calculate the uncertainties obtained and image all accessories, even the translucent.
The flow rate was calibrated for three chips and small deviations from nominal values were observed. The high percentage of error for the smallest flow rates in Chip C is possibly due to

leakage occurring because of the incompatibility of dimensions between the feeding tube and the microfluidic channel connection.

This project (20NMR02 MFMET) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

